Generalized AOR Method for Solving Absolute Complementarity Problems

نویسندگان

  • Muhammad Aslam Noor
  • Javed Iqbal
  • Khalida Inayat Noor
  • Eisa A. Al-Said
چکیده

We introduce and consider a new class of complementarity problems, which is called the absolute value complementarity problem. We establish the equivalence between the absolute complementarity problems and the fixed point problem using the projection operator. This alternative equivalent formulation is used to discuss the existence of a solution of the absolute value complementarity problem. A generalized AOR method is suggested and analyzed for solving the absolute the complementarity problems. We discuss the convergence of generalized AOR method for the L-matrix. Several examples are given to illustrate the implementation and efficiency of the method. Results are very encouraging and may stimulate further research in this direction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems

One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...

متن کامل

A generalized Newton method for absolute value equations associated with circular cones

A direct generalized Newton method is proposed for solving the NP-hard absolute value equation (AVE) Ax−|x| = b when the singular values of A exceed 1. A simple MATLAB implementation of the method solved 100 randomly generated 1000-dimensional AVEs to an accuracy of 10−6 in less than 10 seconds each. Similarly, AVEs corresponding to 100 randomly generated linear complementarity problems with 10...

متن کامل

Solving Generalized Semi-Infinite Programming Problems with a Trust Region Method

In this paper, a trust region method for generalized semi-infinite programming problems is presented. The method is based on [O. Yi-gui, “A filter trust region method for solving semi-infinite programming problems”, J. Appl. Math. Comput. 29, 311 (2009)]. We transformed the method from standard to generalized semi-infinite programming problems. The semismooth reformulation of the Karush–Kuhn–Tu...

متن کامل

Modulus-based GSTS Iteration Method for Linear Complementarity Problems

In this paper, amodulus-based generalized skew-Hermitian triangular splitting (MGSTS) iteration method is present for solving a class of linear complementarity problems with the system matrix either being an H+-matrix with non-positive off-diagonal entries or a symmetric positive definite matrix. The convergence of the MGSTS iterationmethod is studied in detail. By choosing different parameters...

متن کامل

Stochastic Generalized Complementarity Problems in Second-Order Cone: Box-Constrained Minimization Reformulation and Solving Methods

In this paper, we reformulate the stochastic generalized second-order cone complementarity problems as boxconstrained optimization problems. If satisfy the condition that the reformulation’s objective value is zero, the solutions of box-constrained optimization problems are also solutions of stochastic generalized second-order cone complementarity problems. Since the box-constrained minimizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012